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1. Motivations 

    Models for smooth progressive water 
waves 

• 1845：solitary wave（J. S. Russell） 

• 1872：Boussinesq equation（J. Boussinesq） 

• 1894：limiting progressive waves   （G.G. Stokes） 

• 1895：KdV  equation （D. J. Korteweg and G. de 
Vries） 

• 1970s:  waves in finite water depth （J.D. Fenton
） 

 Good agreement between wave models and experiments  



1. Motivations 

• Cammasa-Holm equation (PRL,1993) : 
 
with a peaked solitary wave: 
 
where        is  a constant  
related to the critical  phase  
speed of shallow water waves   
 
 

ω



1. Motivations 

• Mathematically, the CH equation is integrable and 
bi-Hamiltonian, thus possesses an infinite number 
of conservation laws in involution (Camassa-
Holm,1993); 

• Physically, unlike the KdV equation and Boussinesq 
equation, the CH equation can model phenomena of 
soliton interaction and wave breaking (Constantin, 
2000) 

• A few researchers even believed that ‘‘it has the 
potential to become the new master equation for 
shallow water wave theory’’ (Fuchssteiner, 1996) 
 



1. Motivations 

                    Some open questions 
How about finite water depth? 
How about exact wave equations? 
Are the peaked solitary waves consistent with the 

smooth waves in theory? 
Why can we not observe them in experiments? 
Can we gain more information so as to observe 

the peaked/cusped waves in experiments?   
 
 

 



2. Unified Wave Model (UWM) 

• Smooth waves: 
      infinitely differentiable everywhere 

Reason:  solutions of Laplace equation are 
infinitely differentiable everywhere.  

   
• Peaked solitary waves: 
        non-smooth at crest ! 
  
How to handle such kind of non-smoothness? 
 
 



2. Unified Wave Model (UWM) 
     Consider a progressive surface gravity wave propagating on a 

horizontal bottom with a constant phase speed c and a 
permanent form in a finite water depth D.  We solve the 
problem in the frame moving with the phase speed c.  

 
• Assume that the wave elevation has a symmetry about the crest 
     at x  = 0; 
 
• Assume that, in the domain x > 0 and x < 0, the fluid is inviscid 

and incompressible, the flow is irrotational, and surface tension 
is neglected;  
 

• However, the flow at x = 0 is not absolutely necessary to be 
irrotational.  

 



2. Unified Wave Model (UWM) 
(1)  Symmetry: 

 
 
which leads to the boundary conditions 
 
   
 
for both of the smooth and peaked waves. 
 
So, we need governing equations and free surface  

conditions  only  in the domain     
 
 

(a)  ζ (x),u(x, z) are continuous at x = 0
(b)  v(0, z) = 0,   since v(0, z) = −v(0, z)

0 < x < +∞



2. Unified Wave Model (UWM) 

(2) Equations in the domain 
 

with free surface boundary conditions 
 
 
bottom condition:  
open boundary condition: 
              periodic waves:   
               solitary waves:  

0 < x < +∞



2. Unified Wave Model (UWM) 

Mathematically, Laplace equation (with bottom 
condition) has two kinds of solutions: 

(1) traditional base function  
 

       corresponding to smooth waves 
(2) evanescent base function (Massel, 1983)  
 
       corresponding to peaked solitary waves 



3. UWM: smooth waves 

The smooth potential function 
 
automatically satisfy all symmetry conditions 
 
   Therefore, all traditional smooth propagating 

waves can be derived in the frame of the  
Unified Wave Model (UWM)  

    It also supports the correctness of the UWM 
in mathematics.   

φ(x, z) = bn cosh nk(z +1[ ]sin(nkx)
n=1

+∞

∑



4. UWM: peaked waves 

The velocity potential of peaked waves 
 
does not automatically satisfy the symmetry  
 
and the restrict condition 
 
 Therefore,  the restricted condition    
must be enforced  to be satisfied 

φ(x, z) = an cos nk(z +1)[ ]exp(−nkx),      x > 0
n=1

+∞

∑



4. UWM: peaked waves 

Linear theory of peaked waves: 
 
 
 
solution: 
 
phase speed: 
       Given              , there exist an infinite number of solutions 

 
α =

c
gD



4. UWM: peaked waves 

Linear theory of peaked waves 
Surface elevation:  
   Camassa-Holm’s peaked wave is only a special 

case of  our peaked solitary waves  !  
This indicates 
that the UWM 
is reasonable  



4. UWM: peaked waves 

G.G. Stokes (1894): 
   The smooth propagating periodic waves tend 

to have a corner crest at the limiting wave 
amplitude, and thus become non-smooth. 

 
 
  
 Thus, non-smooth waves are acceptable in the 

frame of inviscid fluid.   



4. UWM: peaked waves 

Linear theory of peaked waves 
Velcoity:  
 
 
 
(1)             increases from surface to bottom, and is continuous   

at x = 0  
(2)             decreases from surface to bottom, and is 

discontinuous at x = 0, say,   
      Thus,  the condition                 is enforced.  

u(x, z)

v(x, z)

v(0, z) = 0



4. UWM: peaked waves 

 Lamb (Hydrodynamics, page 371):  

    “the tangential velocity changes 
sign as we cross the surface”,  but  
“in reality the discontinuity, if it 
could ever be originated, would be 
immediately abolished by viscosity” 

 

   Thus, the discontinuity of velocity is also 
acceptable in the frame of inviscid fluid   



Kinetic energy distribution 

Smooth periodic waves 
 
 
 
• Decays exponentially 

from surface to bottom 
• varies periodically in 

the x direction 
 

Peaked waves 
 

 
 
• keeps constant from 

surface to bottom  
• Decays exponentially 

in the x direction 



4. UWM: peaked waves 

Nonlinear theory of peaked waves 
 
with fully nonlinear surface conditions 
 
 
the bottom condition 
and other conditions 
 



4. UWM: peaked waves 

Nonlinear theory of peaked waves 
These nonlinear PDEs are solved by means of 

homotopy analysis method (HAM) 
Advantages of the HAM: 
• Independent of physical small parameters 
• Guarantee of convergence 
 



Applications of the HAM 



4. UWM: peaked waves 

Convergent series solutions: 



4. UWM: peaked waves 

 



4. UWM: peaked waves 

Nonlinear theory of peaked waves  
• The phase speed of peaked waves has 

nothing to do with wave height, say, the 
peaked waves are non-dispersive! 

• The kinetic energy is almost the same from 
surface to bottom 

• There exists the velocity discontinuity at crest   
  

 



Comparison of smooth and peaked waves 

Smooth waves 
 

• Smooth everywhere 
• Dispersive 
• Kinetic energy decays 

exponentially from 
surface to bottom  

Peaked waves 
 

• Non-smooth at crest 
• Non-dispersive 
• Kinetic energy is almost 

the same from surface 
to bottom 



A new theoretical explanation to rogue wave 

   The  rogue wave can suddenly appear on 
ocean even when  “the weather was good, 
with clear skies and glassy swells”,  as 
reported by Graham (2000) and  Kharif (2003). 

A new explanation: 
   Peaked solitary waves with small wave height 

and different phase speed may suddenly 
create a rogue wave somewhere, since they 
are non-dispersive   



Relation between peaked and cusped waves 

   Using the non-dispersive property of peaked 
waves, it is proved that a cusped solitary wave is 
consist of an infinite number of peaked solitary 
waves  



5. Conclusions and discussions 

(1) The UWM gives not only the traditional 
smooth progressive waves but also the 
famous Camassa-Holm’s peaked waves 

 
   Therefore, the UAM is reasonable and more 

general from mathematical viewpoint 



5. Conclusions and discussions 

(2) The UWM admits not only smooth 
progressive waves but also peaked/cusped 
solitray waves in finite water depth 

 
   Therefore, the peaked/cusped solitray waves 

are consistent with smooth waves  



5. Conclusions and discussions 

(3) The peaked solitary waves have many 
unusual characteristics: 

• Phase speed is independent of wave height 
(non-dispersive) 

• Kinetic energy is almost the same from 
surface to bottom 

• Velocity discontinuity at crest 
 
These information are helpful for possible 

experimental observations of them in future.  
 



5. Conclusions and discussions 

(4) Using the non-dispersive property of peaked 
solitary waves, 

(a) a simple but elegant relationship between 
peaked and cusped waves is given,  

(b)a new theoretical explanation of rogue wave 
is suggested.     



5. Conclusions and discussions 

               Models for progressive water 
waves 

• 1845：solitary wave（J. S. Russell） 
• 1872：Boussinesq equation（J. Boussinesq） 
• 1894：limiting progressive waves   （G.G. Stokes） 
• 1895：KdV  equation （D. J. Korteweg and G. de Vries） 
• 1970s:  waves in finite water depth （J.D. Fenton） 
• 1993:    Camassa-Holm equation (Camassa and Holm) 
• 2014:    Unified  Wave Model  (UWM)  
 

 UWM can describe the smooth and  
    non-smooth progressive waves of all previous 

models in shallow and finite depth of water!  



   

 
  Tony,  happy 

60’s Birthday 
   Anniversary!  
 

           Thank You! 
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